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Molecular dissection of box jellyfish venom
cytotoxicity highlights an effective venom antidote
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David T. Nguyen4, Daniel Hesselson 4,5, Jamie E. Seymour 6 & G. Gregory Neely1,2

The box jellyfish Chironex fleckeri is extremely venomous, and envenoming causes tissue

necrosis, extreme pain and death within minutes after severe exposure. Despite rapid and

potent venom action, basic mechanistic insight is lacking. Here we perform molecular dis-

section of a jellyfish venom-induced cell death pathway by screening for host components

required for venom exposure-induced cell death using genome-scale lenti-CRISPR muta-

genesis. We identify the peripheral membrane protein ATP2B1, a calcium transporting

ATPase, as one host factor required for venom cytotoxicity. Targeting ATP2B1 prevents

venom action and confers long lasting protection. Informatics analysis of host genes required

for venom cytotoxicity reveal pathways not previously implicated in cell death. We also

discover a venom antidote that functions up to 15 minutes after exposure and suppresses

tissue necrosis and pain in mice. These results highlight the power of whole genome CRISPR

screening to investigate venom mechanisms of action and to rapidly identify new medicines.
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The box jellyfish, Chironex fleckeri, is one of the most
venomous animal in the world1. Contact with jellyfish
tentacles will trigger the explosive release of nematocysts

that deliver potent and rapid-acting venom into the victim or
prey. C. fleckeri envenoming can be life-threatening, however for
the vast majority of cases patients suffer extreme pain and local
tissue destruction2,3. The venoms of box jellyfish are mixtures
of bioactive proteins that can cause potent haemolytic activity,
cytotoxicity, membrane pore formation, inflammation, in vivo
cardiovascular collapse and lethal effects in experimental ani-
mals4–6. Importantly, the molecular mechanisms involved in
these effects are largely unknown, and here we perform the first
genomic characterisation of the venom death pathway.

The classic treatment response for box jellyfish envenoming is
to administer an antivenom generated in sheep7, although the
efficacy of this antivenom remains in question8,9. More recently,
some venom activities have been reported to be suppressed by
intravenous zinc10, or by heating the site of the sting11. However,
there are currently no therapies that directly target pain and local
tissue necrosis, the most common clinical features of envenom-
ing. The major obstacle to developing new therapies is the limited
molecular understanding of venom action, a prerequisite for
more rational therapies10.

Recently, the bacterial clustered regularly interspaced short
palindromic repeats (CRISPR)-Cas9 system has been shown
effective for genome-scale loss of function screens in mammalian
cells12,13. This approach is particularly suited to identify genes
required for drugs or toxins to trigger cell death, and has been
used to characterise cell death in response to cancer drugs12,13,

bacteria toxins14 and viral infection15. To better understand the
biology of C. fleckeri venom mechanism of action, we perform
the genome-scale functional interrogation of box jellyfish venom
cytotoxicity, identifying hundreds of host candidate genes and
pathways critical for venom action. Moreover, our molecular
insights directly informed a rational drug repurposing strategy
that identified a new box jellyfish venom antidote that can sup-
press tissue destruction and attenuate the excruciating pain
associated with envenoming.

Results
C. fleckeri venom kills cells via necroptosis and apoptosis.
C. fleckeri has tentacles up to 3 m long which contain a venom
that causes excruciating pain and local tissue damage (Fig. 1a).
We found that venom isolated from C. fleckeri rapidly killed
human cells in a concentration-dependent manner by resazurin-
based cell viability assay (Fig. 1b) and similar results were
obtained by evaluating LDH release or ATP depletion (Supple-
mentary Fig. 1a, b). To determine the mode of cell death trig-
gered by C. fleckeri venom, we pharmacologically blocked
apoptotic (Ac-DEVD-CHO) and/or necroptosis pathways
(necrosulfonamide; NSA), then treated cells with venom. Venom
cytotoxicity was insensitive to caspase inhibition, whereas
blocking necrosis with NSA significantly reduced cell death
(Fig. 1c). Of note, inhibition of caspase activity with OVD-OPh
or Z-VAD-FMK also had no effect on cell death (Supplementary
Fig. 1c, d). Moreover, depletion of major pro-apoptotic compo-
nents (such as BAK1, BAX, BID16, BOK17 and CASP8), or the
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Fig. 1 Box jellyfish venom induces a predominantly necrotic cell death. a Mature C. fleckeri jellyfish. b HAP1 cells were treated with vehicle or different
concentrations of jellyfish venom (as indicated) for 24 h, and cell viability was then determined by resazurin-based cell viability assay (n= 3). c Inhibition
of MLKL by necrosulfonamide (NSA; 5 μM), but not caspase inhibition by Ac-DEVD-CHO (10 μM), reduces the jellyfish venom (1 µg/ml) induced cell
death (n= 6). d Depletion of MLKL conferring resistance to jellyfish venom in HAP1 cells. Inhibition of caspase by Ac-DEVD-CHO (Ac) in MLKL-depletion
(sgMLKL) cells protects the jellyfish venom (0.75 µg/ml) induced cell death in a synergistic manner (n= 6). All data represented as mean ± S.E.M.
one-way ANOVA followed by Tukey’s post hoc test, **p < 0.01; ***p < 0.001
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pyroptotic mediator GSDMD18, did not protect cells from
venom cytotoxicity (Supplementary Fig. 1e). Finally, CRISPR
targeting of MLKL, a critical mediator of necroptosis19, provided
significant protection from venom cytotoxicity, while additional
pharmacological inhibition of caspase had a synergistic protective
effect (Fig. 1d). Taken together, these data suggest that box jel-
lyfish venom cytotoxicity involves necroptotic and apoptotic
machinery.

A whole-genome CRISPR screen for box jellyfish venom. To
further investigate the mechanisms of C. fleckeri venom cyto-
toxicity, we performed genome-scale CRISPR knockout (GeCKO)
screen. We mutagenised the HAP1 cells with the GeCKO v2
library, which targets 19,050 human genes with 123,411 unique

guide sgRNA sequences20, and then selected these knockout
pools with a lethal concentration of venom for 14 days. We
recovered the surviving cells and quantified sgRNA abundance
in the selected cells versus an unselected control population by
sequencing (Fig. 2a). We observed enrichment of multiple guide
RNAs associated with venom resistance (Fig. 2b, c; Supplemen-
tary Data 1) and identified a set of the jellyfish venom host factors
that were significantly enriched in venom selected cells compared
with unselected controls (Fig. 1d, e; Supplementary Data 2).

ATP2B1 is required for the venom-induced cell death. We
identified ATP2B1 (ATPase plasma membrane Ca2+ transporting
1; also known as PMCA1) as one of the top-ranking hits within
our screens and the top-ranking membrane protein (Fig. 3a;
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Fig. 2 A CRISPR-Cas9 knockout screen identified genes required for jellyfish venom killing. a Schematic design of pooled CRISPR library screens to identify
the genes required for jellyfish venom killing. b Primary jellyfish venom screening data showing enrichment of specific sgRNAs after the venom selection.
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Supplementary Data 2). To confirm a role for ATP2B1, we
generated stable ATP2B1 CRISPR knockout cell lines (Fig. 3b,
Supplementary Fig. 2a). Importantly, depletion of ATP2B1
resulted in an increased resistance to the jellyfish venom in both
HAP1 and HeLa cells (Fig. 3c, d, Supplementary Fig. 2b), con-
firming a role for this gene in venom cytotoxicity (Supplementary
Fig. 2c–e). A role for ATP2B1 in venom cytotoxicity showed
specificity for C. fleckeri venom, since disrupting ATP2B1 had
no effect on cell death in response to venom from the sea
nettle (Chrysaora quinquecirrha) a related jellyfish (Supplemen-
tary Fig. 2c), the pore-forming toxin streptolysin O (SLO) from
Streptococcus pyogenes (Supplementary Fig. 2d), or α-hemolysin
from Staphylococcus aureus (Supplementary Fig. 2e). ATP2B1
has multiple functional domains. Cells treated with caloxin
1B3, which targets the first extracellular loop of ATP2B1 were
more resistant to jellyfish venom, while targeting the second
extracellular loop with caloxin 2A1 had no effect (Fig. 3e).
As ATP2B1 plays as essential role in the maintenance of intra-
cellular Ca2+ homeostasis21, we tested if the box jellyfish venom
kill cells via a calcium-dependent manner. Surprisingly venom
triggered calcium influx independent of ATP2B1 (Supplementary
Fig. 2f) and depletion of either external or internal calcium has
no effect on venom cytotoxicity (Supplementary Fig. 2g, h).
Thus, our data suggest that the box jellyfish venom works
through ATP2B1 to induce cell death via a calcium-independent
mechanism.

Gene ontology (GO) terms and pathways analysis. To provide
better insight into the functional characteristics of the enriched
screen hits, we performed GO analysis covering the following 3
categories: biological processes, cellular components and mole-
cular functions (Fig. 4a–c; Supplementary Table 1). The highest
enriched GO terms for biological processes included ER-nucleus
signalling pathway, regulation of interleukin-18 production, sterol

metabolic process, membrane protein proteolysis, and glutamine
family amino acid metabolic process (Fig. 4a). With respect
to cellular component, the highest enriched GO terms included
bounding membrane of organelle, Golgi apparatus part, an
integral component of membrane, endoplasmic reticulum part,
and mitochondrial intermembrane space (Fig. 4b). Whereas the
highest enriched GO terms for molecular function included
transforming growth factor beta binding, cAMP binding, protein
homodimerisation activity, syntaxin binding, and cyclic nucleo-
tide binding (Fig. 4c).

To further interrogate venom cytotoxic mechanisms, we
performed pathway analysis based on the REACTOME data-
base22. Our results identified 9 major pathways involved in
jellyfish venom toxicity, including endosomal sorting complex
required for transport (ESCRT), which is important for
membrane budding into endosomes and lysosomes, subsequently
leading to degradation. To confirm a role for endosomal function
in venom-induced cell death, we blocked lysosome function with
chloroquine, a drug known to neutralise the acidic lysosome
environment23. Indeed, pre-treatment of chloroquine conferred
resistance to the jellyfish venom cytotoxicity (Supplementary
Fig. 3a). We further tested the potential therapeutic effect of
chloroquine. This compound, however, only suppressed cell
death when administered for 4 h before venom exposure
(Supplementary Fig. 3b). Regulation of cholesterol biosynthesis
by SREBP (SREBF) and sphingolipid de novo biosynthesis were
also enriched in our venom resistance screen (Fig. 4d, e;
Supplementary Table 1) and we next investigated a role for these
processes in venom-induced cell death.

Sphingomyelin is important for the venom-induced cell death.
To validate a role for sphingolipids in venom-induced cell death,
we focused on SGMS1, a top-ranked hit (Fig. 2d) which encodes
a key enzyme for sphingomyelin synthesis- sphingomyelin
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synthase 1 (Fig. 5a). We generated SGMS1-deficient cells (Fig. 5b)
and these cells were more resistant to the jellyfish venom treat-
ment (Fig. 5c, d). We further investigated whether the depletion
of cellular sphingomyelin can itself protect from the jellyfish
venom. Indeed, cells pre-treated with sphingomyelinase (SMase),
an enzyme that depletes sphingomyelin from cell membranes,
were more resistant to the jellyfish venom, and became com-
pletely resistant to venom at the highest concentration used

(Fig. 5e). Together our data show that cellular sphingomyelin is
critical for jellyfish venom cytotoxicity.

Cholesterol is essential for the venom-induced cell death. Our
pathway analysis also highlighted regulation of cholesterol bio-
synthesis by SREBP as critical for venom cytotoxicity (Figs 3d, e
and 6a) and four of 31 genes in this pathway were enriched in our
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screen (Supplementary Table 1). To elucidate this pathway for the
jellyfish venom cytotoxicity, we generated several CRISPR-
knockout lines. Importantly, depletion of key components in
the SREBP pathway (SCAP, MBTPS1 or MBTPS2) resulted in
increased resistance to jellyfish venom confirming that these
genes are required for venom cytotoxicity (Fig. 6b).

To independently determine the importance of cholesterol
in jellyfish venom action, we used a pharmacological approach.
Membrane cholesterol can be manipulated using methyl-
β-cyclodextrin (MβCD) or 2-hydroxypropyl-β-cyclodextrins
(HPβCD), compounds known to deplete cholesterol from cell
membranes (Fig. 6c)24–27. As anticipated, cells treated with
MβCD or HPβCD exhibited a concentration-dependent resis-
tance to venom cytotoxicity (Fig. 6d, e) and a similarly these
compounds also suppressed red blood cell haemolysis (Fig. 6f).

We next evaluated the therapeutic potential of these com-
pounds. Importantly, these drugs suppressed cell death even
when added up to 15 minutes after venom exposure (Fig. 7a, b).
Jellyfish envenoming elicits significant pain and tissue necrosis28

so we conducted in vivo experiments aimed at blocking these
effects (Fig. 7c). HPβCD is a well-tolerated compound that has
been used to treat Niemann-Pick Disease27. Injection of jellyfish
venom into the mouse hind paw rapidly causes a dose-dependent
spontaneous flinching indicative of pain (Supplementary Fig. 4a),
and importantly HPβCD could suppress this response (Fig. 7d,
Supplementary Fig. 4b). Jellyfish venom also had longer lasting
effects, and 24 h after injection we observed tactile allodynia as
assessed by von Frey mechanical touch assay (Supplementary
Fig. 4c), this effect was slightly reduced by HPβCD (Fig. 7e).
Importantly, we found the injection of jellyfish venom caused
tissue necrosis at the site of envenoming (Fig. 7f–h, Supplemen-
tary Fig. 4d) and HPβCD had a potent ability to block tissue
death (Fig. 7f–h, Supplementary Fig. 4d). Of note, jellyfish venom
injection caused local swelling and this effect was not affected by
HPβCD treatment (Supplementary Fig. 4e). Together, our
unbiased whole-genome functional interrogation of the box
jellyfish venom cell death pathway has highlighted multiple novel
death mechanisms and guided the development of a new antidote
for box jellyfish envenoming.

Discussion
Aside from performing CPR, the classic treatment response for
box jellyfish envenoming is to administer an antivenom in the
emergency room8, however, the efficacy of this treatment remains
unclear. In this study, we used the power of genome-wide
CRISPR screening to functionally isolate host components
required for cell death after exposure to the lethal box jellyfish
venom. Our unbiased screening revealed hundreds of candidate
genes and host factors required for jellyfish venom cytotoxicity,
many of which we have further validated both genetically and
pharmacologically. From a systematic investigation of these
data, we developed a rational box jellyfish venom antidote that
can suppress tissue destruction and prevent pain associated with
envenoming, the most common clinical manifestation of box
jellyfish stings.

We report hundreds of human genes that may be targeted by
box jellyfish venom components. For example, we identified
the ATPase Plasma Membrane Ca2+ Transporter (ATP2B1) as a
critical surface molecule required for venom-induced cytotoxicity.
Our genetic and pharmacological evidence together argues that
ATP2B1 interacts with a venom component, and this interaction
is required for venom actions via a Ca2+-independent mechan-
ism. Of note, while ATP2B1 is necessary for cell death, a role for
ATP2B1 in directly promoting pain remains to be shown.
ATP2B1 has been linked to regulation of hypertension in human
populations29, and smooth muscle-specific ATP2B1 KO mice
exhibit higher blood pressure30. With a deeper understanding of
the mechanisms involved, venom components may be considered
to modulate ATP2B1 as a next-generation anti-hypertensive
strategy.

One critical insight provided by our genomic dissection of
venom cytotoxicity is the role of cholesterol and sphingomyelin in
the venom mechanism of action. Cholesterol and sphingomyelin
are both major components of plasma membrane lipids31,32 that
serve as primary targets for numerous toxins. Previous studies
demonstrated that the venom of jellyfish Aurelia aurita and
Cyanea capillata have a preference to interact with cholesterol
and sphingomyelin33. C. fleckeri venom contains pore-forming
toxins that can cause haemolysis6. Pore-forming toxins can
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directly damage lipid membranes disrupting cell integrity, and
also can provide an entry point for additional lethal venom
components, eventually leading to cell death34. Our results
showed that cholesterol or sphingomyelin depletion blocks box
jellyfish venom cytotoxicity, and we establish MβCD and HPβCD
as potential therapeutic antidote for box jellyfish envenoming.
These substances have also been shown to block other bacterial
pore-forming toxins35,36. Of note, depletion of cholesterol or
sphingomyelin may affect the activity of jellyfish venom directly,
or it may exert indirect effects through its role in membrane line
tension and fluidity, and in the stabilisation of lipid rafts37,38.
Consistent with these views, it has been demonstrated that
ATP2B1 activity is functionally modulated by localisation to
lipid rafts39.

Alternatively, toxins can enter cells via the endocytic pathway,
and subsequently trigger the lysosomal apoptotic pathway40–43.
Our results highlighted gene sets related to endosomal sorting
complex required for transport (ESCRT), suggesting the endo-
cytic pathway is a possible mechanism for the uptake of the

jellyfish venom leading to lysosomal cell death. Moreover,
blocking lysosomal function using chloroquine effectively pro-
tects cells from the jellyfish venom-mediated cell death and
further refinement of venom constituents and potential endoso-
mal targets and mechanisms of internalisation remain to be
established.

Studies of bacterial toxin-induced apoptotic and necrotic
mechanisms have been well documented44. However, the cyto-
toxic cell death mechanism triggered by box jellyfish venom is
largely unknown. Other Jellyfish venoms cause cell death through
osmolytic pathways45 and the box jellyfish Chriopsalmu quad-
rigatus is reported to use apoptotic pathways46. Here we
demonstrated that C. fleckeri venom-induced cell death occurs
through multiple mechanisms. Our results showed that inhibition
of MLKL, but not inhibition of caspases alone, reduced the box
jellyfish venom-induced cytotoxicity, suggesting death occurs via
necroptosis. Although inhibition of both pathways simulta-
neously was able to further prevent box jellyfish induced cyto-
toxicity potentially through convergent mechanisms45. Recently,
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several toxins in C. fleckeri venom has been identified (Type I
toxin: CfTX-1 and -2; Type II toxin: CfTX-A, -B and -Bt)47,48.
Comparative bioactivity assays revealed that the Type I toxin
caused more potent cardiovascular collapse in anesthetised rats,
whereas Type II toxins (including other box jellyfish species
Chiropsalmus quadrigatus49, Carybdea rastoni50 and Carybdea
alata51) associated with potent haemolytic activity and pore
formation in mammalian erythrocytes47. To better understand
box jellyfish envenoming, and help repurpose venom components
as new medicines, a more in-depth analysis of the mechanisms of
action for individual venom toxins using a similar GeCKO screen
approach is warranted.

In summary, our unbiased screening approach has identified
essential genes and cellular pathways involved in the jellyfish
venom mechanisms of triggering cell death (Fig. 8) and lead to
the identification of novel venom antidotes capable of suppressing
pain and tissue destruction associated with envenoming. Further,
we report likely interactions between jellyfish venom components
and human factors, information that can provide an entry point
to exploit jellyfish venom components as new medicines and
propose that genomic dissection of venoms from diverse sources
will accelerate drug discovery.

Methods
Materials. Ac-DEVD-CHO was purchased from Selleck Chemicals. ATP2B1
antibody (#ab3528) was purchased from Abcam. Necrosulfonamide (NSA) and
SGMS1 antibodies (#ABC732) were purchased from Merck Millipore. β-actin
antibody (#4970) was purchased from Cell Signaling Technology, Inc. α-hemolysin,
BAPTA-AM, Chloroquine, 2-hydroxypropyl-β-cyclodextrin (HPβCD), EDTA,
methyl-β-cyclodextrin (MβCD), sea nettle (Chrysaora quinquecirrha) venom (SN),
sphingomyelinase and streptolysin O (SLO) were purchased from Sigma-Aldrich.
Caloxin 1B3 (TIPKWISIIQALRGGGSK-amide) and 2A1 peptide
(VSNSNWPSFPSSGGG-amide) was prepared by custom synthesis from
Mimotopes.

C. fleckeri venom preparation. C. fleckeri were collected from coastal waters near
Darwin Harbour (Northern Territory, Australia). Nematocysts were extracted from
excised jellyfish tentacles52. The box jellyfish venom was extracted from purified
nematocysts, through a process of repeatedly exposing the nematocysts to 0.5 mm
glass beads in a bead beater, followed by centrifugation at 3000 rpm for 1 min53.
The suspended venom was aspirated, then lyophilised and stored at −80 °C.

Cell culture. Human HAP1 cells were generously provided by Dr. Thijn R.
Brummelkamp54. HeLa cells were gift from Dr. Adam R. Cole, Garvan Institute.
HAP1 and HeLa cells were cultured in Medium IMDM (Sigma-Aldrich) and
DMEM (Sigma-Aldrich), respectively, containing 10% bovine calf serum (BCS;
Hyclone Laboratories), 1x GlutaMAX, 100U/ml penicillin G and 100 g/ml strep-
tomycin (Thermo Fisher Scientific) in a humidified atmosphere of 5% CO2–95%
air at 37 °C and were tested for the absence of mycoplasma contamination.

Mice. All mice in this study were male FVB/NJ mice aged 10–15 weeks obtained
from the Animal Resource Centre, WA, Australia. All experiments were approved
by the Animal Ethics Committee at the University of Sydney under protocol 1196.
Mice were housed in a specific pathogen-free facility on a 12-hour light–dark cycle
and standard chow, water and enrichment were provided ad libitum. All in vivo
behavioural assays were performed blind to treatment by a single male investigator.
Assignment to treatment groups was performed randomly by an investigator blind
to the behaviour and health status of the animals.

Cell viability assay. Trypsinised cells (3 × 104) were seeded in each well of a
96-well plate. After 24 h, various concentrations of jellyfish venom were added, and
the cells were incubated for an additional 24 h. After incubation, the medium was
aspirated from each well and add 150 μl of fresh medium containing a 0.002%
solution of resazurin (Sigma-Aldrich) was added to the wells and incubated for 4 h
at 37 °C. The absorbance was measured at 570 nm using a microplate spectro-
photometer (FLUOstar Omega, BMG Labtech).

Lactate dehydrogenase (LDH) activity in supernatants of cells was assessed
according to the protocol of the manufacturer (Thermo Fisher Scientific). Cell death
was also determined by intracellular ATP levels using CellTiter-Glo Luminescent
Cell Viability Assay (Promega) following the manufacturer’s protocols.

Haemolysis. Mouse red blood cell (RBC) lysis was measured as described47 with
modification. Blood was collected by terminal cardiac puncture under isoflurane
anaesthesia (2–3%) in MiniCollect EDTA coated tubes (Greiner-Bio-One).
Collected blood was washed four times in sterile PBS and recovered by cen-
trifugation at 500 × g for 5 min at 4 °C. Diluted RBC (0.5% in PBS) were treated in
triplicate in a 96-well plate and incubate for 1 h at 37 °C. Triplicates of 1% Triton
X-100 and PBS alone were used as positive and negative control, respectively.
Samples were centrifuged for 5 min at 500 × g to pellet intact RBC, and super-
natants were transferred to another 96-well plate. The absorbance of released
haemoglobin was measured at 540 nm using a microplate spectrophotometer.

Intracellular calcium measurement. A Fluo-8 Calcium Flux Assay kit (Abcam)
was used to measure intracellular calcium influx on a FLUOstar Omega microplate
reader following the manufacturer’s protocols. Briefly, trypsinised HAP1 cells
(3 × 104) were seeded in each well of a 96-well plate. After 24 h, plates were washed
twice in Ca2+-free HBSS supplemented with HEPES buffer (pH 7.2), and then the
growth medium was replaced with 100 μl/well of the Fluo-8 dye solution. The plate
was incubated at 37 °C for 30 min and then for another 30 min in the dark at room
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temperature. The loaded cells were then placed in the measurement position in the
microplate reader. Changes in fluorescence from the Fluo-8 dye quantify changes
in intracellular Ca2+ concentrations (excitation/emission 490/525 nm) after treat-
ment with box jellyfish venom. Ca2+ influx was measured up to 45 min.

Lentivirus production. To generate lentivirus, the human lentiCRISPRv2 plasmid
library (Addgene 1000000048) was co-transfected with packaging plasmids pCAG-
VSVG and psPAX2 (Addgene plasmids 35616 and 12260, respectively). Briefly, a
T-75 flask of 80% confluent 293LTV cells (Cell Biolabs) was transfected in Opti-
MEM (Thermo Fisher Scientific) using 8 μg of the lentiCRISPRv2 plasmid library,
4 μg pCAG-VSVG, 8 μg psPAX2, 2.5 μg pAdVantage (Promega), 30 μl of P3000
Reagent (Thermo Fisher Scientific), and 30 μl of Lipofectamine 3000 (Thermo
Fisher Scientific). Cells were incubated overnight and then media was changed to
DMEM (Sigma-Aldrich) with 10% BCS and 1x GlutaMAX (Thermo Fisher Sci-
entific). After 48 h, viral supernatants were collected and centrifuged at 2000 rpm
for 10 min to get rid of cell debris. The supernatant was filtered through a 0.45μm
ultra-low protein binding filter (Merck Millipore). Aliquots were stored at −80 °C.

Cell transduction using the GeCKO v2 library. HAP1 cells were transduced with
the GeCKO v2 library by spinfection. Briefly, 2 × 106 cells per well were plated into
a 12-well plate in IMDM media supplemented with 10% BCS and 8 μg/ml poly-
brene (Sigma-Aldrich). A titrated virus was added in each well along with a no-
transduction control. The plate was centrifuged at 2000 rpm for 1 h at 37 °C. After
the spin, cells were incubated overnight and then enzymatically detached using
TrypLETM Express (Thermo Fisher Scientific). Cells were counted and each well
was split into duplicate wells. One replicate treated with 1 μg/ml puromycin
(Thermo Fisher Scientific) for 3 days. Percent transduction was determined as cell
count from the replicate with puromycin divided by cell count from the replicate
without puromycin multiplied by 100. The virus volume yielding a MOI (multi-
plicity of infection) approximately to 0.4 was used for large-scale screening.

HAP1 jellyfish venom resistance screen. 1 × 108 HAP1 cells were transduced as
described above using 12-well plates with 2 × 106 cells per well. Puromycin was
added to the cells 24 h post transduction and maintained for 7 days. Cells were
pooled together into larger flasks after 3 days incubation of puromycin. On day 7,
cells were split into treatment conditions in duplicate with a minimum of 2.5 × 107

cells per replicate. Two replicates were cultured in IMDM supplemented with 1 μg/
ml jellyfish venom, and one replicate was culture in regular IMDM media.
Replicates were either passaged or fresh media was added every 2–3 days. In
parallel, untransduced HAP1 cells were treated with 1 μg/ml jellyfish venom to
ensure the venom was cytotoxic in each case. Cells were harvested after 14 days of
the treatment for genomic DNA analysis.

Genomic DNA sequencing. Genomic DNA (gDNA) extracted from harvested
cells with a Blood & Cell Culture Midi kit (Qiagen) was used for PCR reactions as
described previously20. Primers used to amplify lentiCRISPR v2 sgRNAs for the
first PCR are: sense, 5′-AAT GGA CTA TCA TAT GCT TAC CGT AAC TTG
AAA GTA TTT CG-3′ and antisense, 5′-TCT ACT ATT CTT TCC CCT GCA
CTG TTG TGG GCG ATG TGC GCT CTG-3′.

A second PCR was performed to attach Illumina adaptors and to barcode
samples. The second PCR was done in a 100 μl reaction volume using 5 μl of the
first PCR product. Primers for the second PCR include both a variable length
sequence to increase library complexity and an 6 bp barcode for multiplexing of
different biological samples: sense, 5′-AAT GAT ACG GCG ACC ACC GAG ATC
TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC T (1–9 bp variable
length sequence) (6 bp barcode) tct tgt gga aag gac gaa aca ccg-3′ and antisense, 5′-
CAA GCA GAA GAC GGC ATA CGA GAT AAG TAG AGG TGA CTG GAG
TTC AGA CGT GTG CTC TTC CGA TCT tct act att ctt tcc cct gca ctg t-3′.

Amplification was carried out with 18 cycles for the first PCR and 24 cycles for
the second PCR. PCR products from the second PCR were gel extracted, quantified,
mixed and sequenced using a HiSeq 2500 (Illumina). The sgRNA sequences against
specific genes were recovered after removal of the tag sequences using the Checkout
[http://100bp.wordpress.com] and cutadapt (ver. 1.12).

Enrichment of sgRNAs and genes were analysed using MAGeCK55 (Ver.0.5.6)
by comparing read counts from cells after jellyfish venom selection with counts
from matching unselected cell population to obtain a p-value. P < 0.01 was
considered statistically significant.

Gene validation. To validate the candidate genes from screening, sgRNAs from the
parent library were cloned into pLentiCRISPRv2 (Addgene plasmid 52961). The
control sgRNA was used from the parent library. Lentiviruses were produced as
described above and transduced HAP1 or HeLa cells were selected with 1 μg/ml
puromycin 24 h post-infection. Two weeks later, puromycin was removed, and cells
were allowed to recover for three additional days before analysis. Gene disruption
efficiency was verified by western blot. The sequences of the sgRNAs used are in
Table S4.

Gene ontology (GO) and pathway enrichment analysis. GO terms and
REACTOME pathways enriched in the screen were analysed using the Con-
sensusPathDB56. The GO level 3–5 categories and a p-value cut-off of 0.05 were

selected. The minimum overlap with the input list for pathway analysis was set at
two proteins, with p < 0.05.

Western blot analysis. Cells were harvested in lysis buffer [50 mM Tris (pH 7.5),
150 mM NaCl, 1% NP40, 0.5% sodium deoxycholate, 1 mM EDTA, and 0.1% SDS]
containing protease inhibitor cocktail (Sigma-Aldrich), and the protein con-
centrations were determined using the BCA Protein Assay (Thermo Fisher Sci-
entific). The proteins (20 µg) were electrophoresed on 10% SDS-polyacrylamide
gels, transferred to PVDF membranes (Amersham Bioscience), and incubated
with specific primary antibodies (1:1000 for all primary antibodies) at 4 °C over-
night. After washing, the membranes were incubated with horseradish peroxidase-
conjugated secondary antibodies (1:5000; #31460 from Thermo Fisher Scientific)
for 1 h and were then visualised with enhanced chemiluminescent substrate
(Thermo Fisher Scientific). Uncropped images are shown in Supplementary Fig 5.

Injections. 250 ug of Jellyfish venom in 30 μl normal saline (0.9%, Pfizer) alone or
in the presence of 20 ul HPβCD (50% W/V) was injected under isoflurane
anaesthesia (2–3% mixed with 0.8 to 1 L O2, IsoFlo Zoetis) into the mouse footpad.
Rapid recovery from anaesthesia was achieved with high flow O2.

Spontaneous pain behaviour. Following recovery, mice were placed into plex-
iglass boxes on a raised clear plexiglass table. Mouse behaviour was recorded from
below using a video camera (Panasonic). The first five minutes of video were
analysed for flinching behaviour (manually with the assistance of custom behaviour
enumeration software) which was the dominant immediate pain behaviour.

Von Frey mechanical allodynia assay. Mice were habituated and tested with
10 probes of ascending filaments (Semmes Weinstein Filaments, North Coast
Medical 0.04–2.0 g) on each hind paw in the sural territory. Mouse von Frey
thresholds were established on 2 separate days for baseline readings and is defined
as the stimulus eliciting reactions in 50% of probes. Mice were tested 1 day
following injection of Jellyfish venom into the foot pad.

Necrosis. Necrosis was assessed 3 days following the injection of the venom.
Photographs were taken of the mice hind paw and all photographs were scored
blind. Necrosis was scored by 3 independent blinded investigators semi-
quantitatively from pictures taken at euthanasia (either 3 days following injection
or if an ethical endpoint was met). The score for each mouse is an average of the
scores of each investigator. The scoring system used was:

0) No evidence of necrosis
1) Mild limited but limited to part of one digit or small portion of paw
2) Mild affecting Multiple digits or affecting paw and digit or entire digit
3) Moderate to severe affecting Multiple digits and paw and/or Autotomy

(any loss of a digit)

Swelling. Calipers were used twice daily to assess swelling, swelling scores are from
just prior to euthanasia. The measurement was of the largest dorsoventral width.

Histology. Foot pads were dissected and fixed in paraformaldehyde 4% (Sigma) for
24 h then cryoprotected in 30% sucrose and flash frozen embedded in OCT (VWR)
in Liquid nitrogen. The resultant tissue was then sectioned on a cryostat at 8–12
µm (Thermo Fisher). For Hoecst staining, tissue was washed in PBS, blocked in 2%
BSA, 0.1% Triton X-100, washed and stained using Hoecst (Thermo Fisher 1:2000).
Following this, tissue section was imaged at 40X using a Leica DM6000 upright
microscope. For Haematoxylin and Eosin staining, PFA fixed frozen Sections were
washed in water thoroughly to remove all OCT. The sections were immersed into
Harris Haematoxylin for 30–40 s and washed in tap water until clear. The Hae-
matoxylin was blued using Scott’s Bluing solution and washed in tap water. The
slides were immersed into ethanol then eosin. Finally, slides were dehydrated into
95% ethanol and 100% ethanol. The slides were dried then cleared into citrasol and
cover-slipped using Xylene/citrasol and dried overnight and imaged using a
DM6000 upright Leica microscope.

Data analysis. Statistical analysis performed was specified in figure legends.
p < 0.05 was considered statistically significant.

Data availability
The authors declare that all data supporting the findings of this study are available within
the manuscript and its Supplementary Information files or are available from the authors
upon reasonable request. A reporting summary for this study is available as a
supplementary information file.
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